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IntroductionIntroduction
 Diffusion Tensor Imaging (DTI)Diffusion Tensor Imaging (DTI)11 is an advanced MRI  is an advanced MRI 

technique which can quantify diffusivity of water in tissues.technique which can quantify diffusivity of water in tissues.

 MR signal is modeled as a function of diffusion and MR signal is modeled as a function of diffusion and 
experimental parameters.experimental parameters.

 Uncertainty in estimation of diffusion parameters depends Uncertainty in estimation of diffusion parameters depends 
on the choice of experimental parameters.on the choice of experimental parameters.

 A D-optimal techniqueA D-optimal technique22 using  using a prioria priori structure information  structure information 
for selection of experimental parameters to reduce for selection of experimental parameters to reduce 
estimation uncertainty is proposed and experimentally estimation uncertainty is proposed and experimentally 
validated.validated.

[1] P. J. Basser, J. Matiello, and D. Le Bihan, “MR Diffusion Tensor Spectroscopy and Imaging”, J. Biophys., 1994, vol. 66, 
p 259-267.
[2] S. Majumdar, S. S. Udpa, and L. G. Raguin, “Robust Optimization of Diffusion-Weighted MRI Protocols Used for Fiber 
Reconstruction”, J. Phys: Conf. Series, 2008, vol. 135, p 012069.



    

DTI FormulationDTI Formulation
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is diffusion encoding gradient 
direction.

Axisymmetric condition: ⊥⊥⊥ == DDD yx
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T1 image

Motivation: Using Motivation: Using A Priori A Priori InformationInformation

For special structures such as spinal cord, 
most nerve fibers are oriented within ~ 350 of 
mean fiber orientation as obtained from 
preliminary studies.

S0 image

 A priori spread of fiber distribution 
~ 35o

Optimization of 
gradient directions

Reduced 
Uncertainty

35o : at 80% cumulative distribution



    

OptimizationOptimization
• Assume: Noise is additive, Gaussian and independent. 

• For a nonlinear least-squares estimation, the Cramer-Rao bound1 on 
estimator covariance: 12 )( −=Σ XX T

CR σ

where sensitivity matrix , ]},1[,{ ),,( NiX i ∈=ΩΩ gβ
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Taking 
determinant, 

)det(/1)],(maxarg[min }{ ,
XXff T

robust FF
==Ω Λ∈φθg

Robust optimization (using a priori information):

• “minimax” technique; a priori information in f and Λ.

CRΣdet )det( XX T

[1] S. M. Kay. Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice 
Hall, Ney Jersey, USA, 1993. pp. 47-49.
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SimulationsSimulations
 Monte Carlo simulations with 20,000 realizations of the DTI signal Monte Carlo simulations with 20,000 realizations of the DTI signal 
 DDzzzz= 1.82 x 10= 1.82 x 10-5-5  cmcm22  ss-1-1, , DDxxxx =  = DDyyyy = 9.25 x 10 = 9.25 x 10-7-7 cm cm22 s s-1-1, , 

DDxyxy =  = DDxzxz =  = DDyzyz = 0,  = 0, bb = 1 x 10 = 1 x 1055 s cm s cm-2-2

σ = 0.1 σ = 0.2 



    

 UsingUsing a priori  a priori datadata

Experiment designExperiment design

From prescan data of spinal 
cord region, a priori information,

2.0,

)10,5.19(),(

10623.0

10367.1
123

123
||

=
−=

×=

×=
−−

⊥

−−

σ
ϕθ

  

 

 

 

noise

mean

smmDmean

smmDmean

oo
FF

Performance prediction: Lower 
predicted covariance bound in 
OPT30 implies possible reduction 
in estimation uncertainty (α is from 
mean (θF,φF) )

Spread of fiber distribution ~ 35o

b = 1 x 10b = 1 x 1055 s cm s cm-2-2



    

Experiment designExperiment design
 MRI specifications:MRI specifications:  

• T2 and diffusion-weighted images were acquiredT2 and diffusion-weighted images were acquired
• A spin echo EPI sequence on a 3T GE Signa HDx scanner (GE A spin echo EPI sequence on a 3T GE Signa HDx scanner (GE 

Healthcare, Waukesha, WI), 8-channel head coil:Healthcare, Waukesha, WI), 8-channel head coil:    
 30 contiguous 3-mm axial slices, TR = 8000 ms, TE = 76 ms, 30 contiguous 3-mm axial slices, TR = 8000 ms, TE = 76 ms, 
 matrix size =128x128, FOV = 22 cm x 22 cm,  number of  excitations = 2, matrix size =128x128, FOV = 22 cm x 22 cm,  number of  excitations = 2, 
 parallel imaging acceleration factor = 2, b = 1000 s/mmparallel imaging acceleration factor = 2, b = 1000 s/mm22, 30 diffusion , 30 diffusion 

encoding gradients each(OPT30, MF30) and scan time per set = 8 min 32 encoding gradients each(OPT30, MF30) and scan time per set = 8 min 32 
secsec

 5 sets of data for OPT30 and MF30 each were collected5 sets of data for OPT30 and MF30 each were collected
 Bootstrapping method was used to regenerate data to Bootstrapping method was used to regenerate data to 

5000 realizations5000 realizations
• For covariance computationFor covariance computation
• Mean signal from original 5 set data was maintained during Mean signal from original 5 set data was maintained during 

Bootstrapping Bootstrapping 



    

Experiment designExperiment design
 Gradient directions (OPT30):Gradient directions (OPT30):

(a) 

Gradient directions (a) on 3D unit sphere , (b) In 2D (opened sphere), 
underlaying echo signal for range of gradient directions 

(b)



    

Region of Interest (ROI)Region of Interest (ROI)

 Extract spinal cord tract voxelsExtract spinal cord tract voxels

(a) Axial, (b) Coronal and (c) Sagittal FA maps of cervical spinal cord. Spinal cord 
tract voxels (near C1-C2) selected for analysis marked in red.

            (a)                                           (b)                                         (c)



    

ResultsResults
 Reduction in uncertainty for the voxels in the spinal cord tracts: Reduction in uncertainty for the voxels in the spinal cord tracts: 

 Experimental resultsExperimental results

          matched predicted matched predicted 

          reduction.reduction.

 Voxels in spinal cord Voxels in spinal cord 

tracts (white matter) are tracts (white matter) are 

more anisotropic than other more anisotropic than other 

grey matter regions. grey matter regions. 

Performance is expectedlyPerformance is expectedly

better than MF30. better than MF30. 
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ConclusionConclusion
 21 voxels selected in the cervical spinal cord tracts show 21 voxels selected in the cervical spinal cord tracts show 

reduction in uncertainty using OPT30 as compared to reduction in uncertainty using OPT30 as compared to 
MF30(standard)MF30(standard)

 A priori A priori structure information has been used in optimization to structure information has been used in optimization to 
reduce estimation uncertainty: a spread of 35reduce estimation uncertainty: a spread of 3500 in fiber  in fiber 
distribution has been incorporated in the optimizationdistribution has been incorporated in the optimization

 Optimized gradient scheme can provide better performance Optimized gradient scheme can provide better performance 
even at larger angular deviation (even at larger angular deviation (αα) from mean fiber orientation ) from mean fiber orientation 
indicating robustness of the gradient schemeindicating robustness of the gradient scheme

 Improved uncertainty can imply applications in spinal cord MRI Improved uncertainty can imply applications in spinal cord MRI 
studies for detection of multiple sclerosis and myelopathy studies for detection of multiple sclerosis and myelopathy 



    

Thank you!Thank you!


