Optimizing Diffusion Tensor Imaging Protocol using *a priori* Structure Information: Experimental Validation

> Shantanu Majumdar¹, David C. Zhu^{3,4}, Satish S. Udpa¹, L. Guy Raguin^{2,3}

¹ Department of Electrical & Computer Engineering,
² Department of Mechanical Engineering,
³ Department of Radiology,
⁴ Department of Psychology
Michigan State University, East Lansing

Outline

- Introduction
- Motivation
- Simulations
- Experiments
- Results
- Conclusion

Introduction

 Diffusion Tensor Imaging (DTI)¹ is an advanced MRI technique which can quantify diffusivity of water in tissues.

 MR signal is modeled as a function of diffusion and experimental parameters.

 Uncertainty in estimation of diffusion parameters depends on the choice of experimental parameters.

A D-optimal technique² using a priori structure information for selection of experimental parameters to reduce estimation uncertainty is proposed and experimentally validated.

[1] P. J. Basser, J. Matiello, and D. Le Bihan, "MR Diffusion Tensor Spectroscopy and Imaging", *J. Biophys.*, 1994, vol. 66, p 259-267.

[2] S. Majumdar, S. S. Udpa, and L. G. Raguin, "Robust Optimization of Diffusion-Weighted MRI Protocols Used for Fiber Reconstruction", *J. Phys: Conf. Series*, 2008, vol. 135, p 012069.

DTI Formulation

DTI signal: $E = S(\mathbf{g})/S_0 = \exp(-b\mathbf{g}^T D\mathbf{g})$, **g** is diffusion encoding gradient direction.

$$D = \begin{bmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{xy} & D_{yy} & D_{yz} \\ D_{xz} & D_{yz} & D_{zz} \end{bmatrix}$$

Estimation parameters:

$$\beta = \{D_{xx}, D_{yy}, D_{zz}, D_{xy}, D_{xz}, D_{yz}\}$$

 $D = R^{T} D R, R = R (\theta_{F}, \varphi_{F}), D = \begin{bmatrix} D_{\perp x} & 0 & 0 \\ 0 & D_{\perp y} & 0 \\ 0 & 0 & D_{\parallel} \end{bmatrix}$

Diffusion ellipsoid

We have used,

Axisymmetric condition: $D_{\perp x} = D_{\perp y} = D_{\perp}$

Motivation: Using A Priori Information

Reduced

Uncertainty

T1 image

For special structures such as spinal cord, most nerve fibers are oriented within ~ 35° of mean fiber orientation as obtained from preliminary studies.

A priori spread of fiber distribution $\sim 35^{\circ}$

Optimization of gradient directions

35°: at 80% cumulative distribution

Optimization

- Assume: Noise is additive, Gaussian and independent.
- For a nonlinear least-squares estimation, the Cramer-Rao bound¹ on estimator covariance: $\Sigma_{CR} = \sigma^2 (X^T X)^{-1}$

where sensitivity matrix , $X(\Omega,\beta)$, $\Omega = \{g_i, i \in [1,N]\}$

and
$$X_{ij} = \eta_j (\mathbf{g}_i, \beta), \ \eta_j (\mathbf{g}, \beta) = \partial E (\mathbf{g}, \beta) / \partial \beta_j, \ j \in [\mathbf{1}, M]$$

$$\beta = \{D\}$$

 $det\Sigma_{CR} = det(X^T X)^{\uparrow}$

M=4, no. of parameters

Taking determinant, $det\Sigma_{CR} = \frac{\sigma^{2M}}{det(X^T X)}$

Robust optimization (using a priori information):

 $\Omega_{robust} = \arg[\min(\max_{\{\theta_F, \phi_F\} \in \Lambda} f)]f = 1/\det(X^T X)$

• "minimax" technique; a priori information in f and Λ .

[1] S. M. Kay. Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice Hall, Ney Jersey, USA, 1993. pp. 47-49.

Simulations

Monte Carlo simulations with 20,000 realizations of the DTI signal D_{zz} = 1.82 x 10⁻⁵ cm² s⁻¹, $D_{xx} = D_{yy}$ = 9.25 x 10⁻⁷ cm² s⁻¹, $D_{xy} = D_{xz} = D_{yz} = 0, b = 1 \times 10^5 \text{ s cm}^{-2}$

 $\sigma = 0.1$

Experiment design

Using a priori data

From prescan data of spinal cord region, *a priori* information, *mean* $D_{\parallel} = 1.367 \times 10^{-3} mm^2 s^{-1}$ *mean* $D_{\perp} = 0.623 \times 10^{-3} mm^2 s^{-1}$ *mean* $(\theta_F, \varphi_F) = (19.5^\circ, -10^\circ)$ *noise*, $\sigma = 0.2$

Spread of fiber distribution $\sim 35^{\circ}$

 $b = 1 \times 10^5 \text{ s cm}^{-2}$

Performance prediction: Lower predicted covariance bound in OPT30 implies possible reduction in estimation uncertainty (α is from mean ($\theta_{\rm F}, \phi_{\rm F}$))

Experiment design

MRI specifications:

- T2 and diffusion-weighted images were acquired
- A spin echo EPI sequence on a 3T GE Signa HDx scanner (GE Healthcare, Waukesha, WI), 8-channel head coil:
 - 30 contiguous 3-mm axial slices, TR = 8000 ms, TE = 76 ms,
 - matrix size =128x128, FOV = 22 cm x 22 cm, number of excitations = 2,
 - parallel imaging acceleration factor = 2, b = 1000 s/mm², 30 diffusion encoding gradients each(OPT30, MF30) and scan time per set = 8 min 32 sec
- 5 sets of data for OPT30 and MF30 each were collected
- Bootstrapping method was used to regenerate data to 5000 realizations
 - For covariance computation
 - Mean signal from original 5 set data was maintained during Bootstrapping

Experiment design

Gradient directions (OPT30):

Gradient directions (a) on 3D unit sphere , (b) In 2D (opened sphere), underlaying echo signal for range of gradient directions

Region of Interest (ROI)

Extract spinal cord tract voxels

(a) Axial, (b) Coronal and (c) Sagittal FA maps of cervical spinal cord. Spinal cord tract voxels (near C1-C2) selected for analysis marked in red.

Results

Reduction in uncertainty for the voxels in the spinal cord tracts: $D_{OPT 30}/D_{MF 30} < 1$, where $D = det(\Sigma)$, $\Sigma = covarianceestimatio$, $\Sigma = covarianceound(prection)$

 Experimental results matched predicted reduction.

 Voxels in spinal cord tracts (white matter) are more anisotropic than other grey matter regions.
Performance is expectedly better than MF30.

Conclusion

- 21 voxels selected in the cervical spinal cord tracts show reduction in uncertainty using OPT30 as compared to MF30(standard)
- A priori structure information has been used in optimization to reduce estimation uncertainty: a spread of 35° in fiber distribution has been incorporated in the optimization
- Optimized gradient scheme can provide better performance even at larger angular deviation (α) from mean fiber orientation indicating robustness of the gradient scheme
- Improved uncertainty can imply applications in spinal cord MRI studies for detection of multiple sclerosis and myelopathy

Thank you!